
Treating Dashboards Like Code

Scott Kidder, Staff Software Engineer @ Mux

Grafanacon, February 26, 2019

Agenda

!2

• Background on Mux

• Monitoring for Mux Data

• Greenfield Monitoring Opportunities with Mux Video

• Goals for monitoring

• Questions

!3

Background on Mux

What is Mux?

!4

• Mux Data: Analytics for Video
(2016)

• Mux Video: API for Video (2018)

• Mux Video makes it easy to
publish video with a REST API call

• Optimal video encoding settings
chosen automatically

• Deployments in AWS and Google
Cloud

!5

Monitoring for Mux Data

For a Moment, Let’s Return to a Simpler Time

!6

• Mux has used Grafana since inception (early 2016)

• Single deployment of Rancher container orchestration system in
AWS

• Supported Mux Data, our only product at the time

• Single Grafana instance for all dashboards

• Single InfluxDB instance for application metrics

!7

!8

But in many ways, things were
more difficult…

Problems began to surface

!9

• Management of alerting rules was performed in Chronograf

• Ran a second visualization tool just to administer alerting rules

• No versioned history of alerting rules

• Rules were often disabled during a deploy or maintenance, and
then people would forget to re-enable them, leading to undetected
incidents

• Unclear why alerts were disabled, and whether it’s safe to delete

!10

Greenfield Monitoring
Opportunities with Mux Video

Mux Video Development

!11

• Late 2017 we began developing Mux Video

• We had already run some proof-of-concept Kubernetes cluster
with Mux Data

• Decided to run all services in Kubernetes and monitor with
Prometheus and Grafana

!12

!13

Goals for Monitoring

Goals

!14

1. Easily configure which services are scraped by Prometheus

2. Run policy checks on alert rules with each build

3. Store the dashboards and alert rules alongside code

4. Automatically deploy dashboards and alert rules to Kubernetes
clusters each time we ship code

!15

Easily configure which services are
scraped by Prometheus

Goal #1

Prometheus Monitoring in Kubernetes

!16

• Using the Prometheus Operator to configure Prometheus and
Alertmanager

• https://github.com/coreos/prometheus-operator

• Uses Kubernetes label metadata to target which services to
scrape and on which port

Prometheus: Kubernetes Service Monitor

!17

apiVersion:
monitoring.coreos.com/v1  
kind: ServiceMonitor  
metadata:  
 name: core-servers  
 namespace: monitoring  
 labels:  
 k8s-app: core-servers  
spec:  
 jobLabel: core-servers  
 namespaceSelector:  
 any: true  
 selector:  
 matchLabels:  
 monitoring: core  
 endpoints:  
 - port: metrics  
 interval: 10s  
 honorLabels: true

1) Examine services in all Kubernetes namespaces

2) Match on services with a “monitoring: core” label

3) Scrape whatever port is named “metrics”

http://monitoring.coreos.com/v1

Prometheus: Monitored Service

!18

apiVersion: v1  
kind: Service  
metadata:  
 name: kafka  
 namespace: default  
 labels:  
 app: kafka  
 monitoring: core1) Simply add the “monitoring: core”

label to a server

Services Scraped

!19

!20

Run policy checks on alert rules
with each build

Goal #2

Prometheus: Automated Policy Check

!21

Prometheus: Automated Policy Check

!22

MONITORING_YAML_FILES=$(find $searchdir -type f -name
"*.rules.yaml" | sort)  
for f in $MONITORING_YAML_FILES; do  
 promtool check rules $f  
 rc=$?  
 if [[$rc != 0]]; then  
 echo "$f is not a valid Prometheus alert rule
YAML file."  
 echo ""  
 ERRORS="yes"  
 fi  
 LAST_CHAR=$(cat $f | tr '\n' '#' | tail -c 1) 
 if [[$LAST_CHAR != "#"]]; then  
 echo "$f does not end with a new line." 
 echo ""  
 ERRORS="yes"  
 fi  
done

1) Use promtool to
validate alert rules files

2) Verify that all files end
with a new-line to allow
for concatenation

!23

Store the dashboards and alert
rules alongside code

Goal #3

Code Organization

!24

1) Dashboards are named “*-
dashboard.json”, and stored in a
“monitoring/grafana” directory for the
associated component

2) Alert rules are named
“*.rules.yaml” and kept in a
“monitoring” directory

!25

Automatically deploy dashboards
and alert rules to Kubernetes
clusters each time we ship code

Goal #4

Automatic Deployment of Dashboards and Alert Rules

!26

• Our Buildkite builds automatically generate Kubernetes manifest
for servers across all target environments

• Also generate Kubernetes ConfigMaps with Grafana dashboards
and Prometheus alert rules

• Buildkite deploy plan applies Kubernetes manifests and
ConfigMaps to each Kubernetes cluster

• Grafana and Prometheus ConfigMaps automatically reloaded

Gather Alerting Rules

!27

#!/bin/bash  
 
set -e  
RULES_DIR=$1  
mkdir -p $OUTPUT_DIR  
rm -r $OUTPUT_DIR/* || true  
 
for searchdir in "${@:2}"; do  
 RULES_FILES=$(find $searchdir
-type f -name "*.rules.yaml")  
 for file in $RULES_FILES; do  
 cp $file $RULES_DIR  
 done  
done

1) Find all alert rules files
conforming to naming pattern

Generate Kubernetes ConfigMap with Alert Rules

!28

set -e  
NAMESPACE=$1  
OUTPUT_FILE=$2  
RULES_DIR=$3  
 
mkdir -p $(dirname $OUTPUT_FILE)  
 
cat <<-EOF > $OUTPUT_FILE  
apiVersion: v1  
kind: ConfigMap  
metadata:  
 name: prometheus-k8s-rules  
 namespace: $NAMESPACE  
 labels:  
 role: prometheus-rulefiles  
 prometheus: k8s  
data:  
EOF  
 
for f in $(find $RULES_DIR -type f -name
"*.rules.yaml")  
do  
 echo " $(basename $f): |+" >> $OUTPUT_FILE 
 cat $f | sed "s/^/ /g" >> $OUTPUT_FILE 
done

1) Begin rendering a Kubernetes
ConfigMap manifest

2) Concatenate contents of each
alert rule file to the ConfigMap

Automatic Deployment of Prometheus Alert Rules

!29

• Prometheus Operator includes a config reloader that monitors the
ConfigMap for changes

• Sends web hook to Prometheus instructing it to reload its config

Gather Grafana Dashboards and Datasources

!30

#!/bin/bash  
set -e

OUTPUT_DIR=$1  
mkdir -p $OUTPUT_DIR  
rm -r $OUTPUT_DIR/* || true

for searchdir in "${@:2}"; do  
 DASHBOARD_FILES=$(find $searchdir -type
f -name "*-dashboard.json" -o -name "*-
datasource.json" | sort)  
 for file in $DASHBOARD_FILES; do  
 echo "FILE: $file"  
 cp $file $OUTPUT_DIR  
 done  
done

1) Find all Grafana dashboard
and datasource files
conforming to naming pattern

Render ConfigMap with Grafana Dashboards

!31

 monitoring/grafana/grafana-dashboards-configmap-generator/bin/grafana_dashboards_generate.sh \ 
 -n ${MONITORING_NAMESPACE} \  
 -s 200000 \  
 -o run/k8s ${NAMESPACE}/monitoring/grafana/config-map.yaml \ 
 -g run/k8s/${NAMESPACE}/monitoring/grafana/run.yaml \ 
 -i run/monitoring/grafana \  
 --hostname ${GRAFANA_HOSTNAME}

Have been using the `grafana-dashboards-configmap-generator` script at
https://github.com/eedugon/grafana-dashboards-configmap-generator

https://github.com/eedugon/grafana-dashboards-configmap-generator

Grafana Watcher to reload Dashboards

!32

 - name: grafana-watcher 
 image: quay.io/coreos/grafana-watcher:v0.0.8 
 args: 
 - '--watch-dir=/var/grafana-dashboards-0' 
 - '--grafana-url=http://localhost:3000'  
 env: 
 - name: GRAFANA_USER 
 valueFrom: 
 secretKeyRef: 
 name: grafana-credentials  
 key: user 
 - name: GRAFANA_PASSWORD 
 valueFrom: 
 secretKeyRef: 
 name: grafana-credentials  
 key: password 
 volumeMounts: 
 - name: grafana-dashboards-0 
 mountPath: /var/grafana-dashboards-0 
 volumes: 
 - name: grafana-storage 
 emptyDir: {} 
 - name: grafana-dashboards-0  
 configMap: 
 name: grafana-dashboards-0

1) Use ‘grafana-watcher’ container to
reload Grafana dashboards supplied
in ConfigMap volume

http://quay.io/coreos/grafana-watcher:v0.0.8
http://localhost:3000'

Next Steps

!33

• Replace ‘grafana-watcher’ pod with Grafana provider config that
automatically reloads dashboards from ConfigMap volume path

• Control over which dashboards are deployed; some Grafana
instances have dashboards that are unused or point to non-
existent servers

Credit to the Mux Team

!34

Adam Brown Matt Ward

!35

Thank You!

